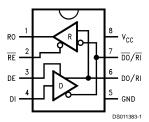
July 1998

National Semiconductor

DS36276 FAILSAFE Multipoint Transceiver


General Description

The DS36276 FAILSAFE Multipoint Transceiver is designed for use on bi-directional differential busses. It is compatible with existing TIA/EIA-485 transceivers, however, it offers an additional feature not supported by standard transceivers.

The FAILSAFE feature guarantees the receiver output to a known state when the Interface is in the following conditions: Floating Line, Idle Line (no active drivers), and Line Fault conditions (open or short). The receiver output is in a HIGH state for the following conditions: OPEN Inputs, Terminated Inputs (50Ω), and SHORTED Inputs.

FAILSAFE is a highly desirable feature when the transceivers are used with Asynchronous Controllers such as UARTs.

Connection and Logic Diagram

Order Number DS36276M See NS Package Number M08A

Features

- FAILSAFE receiver, RO = HIGH for:
 - OPEN inputs
 - SHORTED inputs
- Compatible with popular interface standards:
 - TIA/EIA-485 (RS-485)
 - TIA/EIA-405 (RS-405) — TIA/EIA-422-A (RS-422-A)
 - CCITT Recommendation V.11
- Bi-Directional Transceiver
- Designed for multipoint transmission
- Separate driver input, driver enable, receiver enable, and receiver output for maximum flexibility
- Wide bus common mode range — (-7V to +12V)
- Pin compatible with: DS75176B, DS96176, DS3695 and SN75176A and B
- Available in SOIC package

Truth Tables

Driver

Inputs			Outputs		
RE	DE	DI	DO/RI	DO /RI	
Х	н	Н	Н	L	
x	н	L	L	н	
x	L	Х	Z	Z	

Receiver

Inputs			Output
RE	DE	RI– R I	RO
L	L	≥0V	Н
L	L	≤–500 mV	L
Н	Х	Х	Z

Receiver FAILSAFE

Inputs			Output
RE	DE	RI-RI	RO
L	L	SHORTED	н
L	L	OPEN	н
Н	x	X	Z

TRI-STATE® is a registered trademark of National Semiconductor Corporation.

Absolute Maximum Ratings (Note 1)

•

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

Supply Voltage (V _{CC})	7V
Input Voltage (DE, RE , and DI)	5.5V
Driver Output Voltage/	
Receiver Input Voltage	-10V to +15V
Receiver Output Voltage (RO)	5.5V
Maximum Package Power Dissipation	@ +25°C
M Package (derate 5.8 mW/°C above	
+25°C)	726 mW
Storage Temperature Range	–65°C to +150°C

Lead Temperature (Soldering 4	
sec.)	260°C
Max Junction Temperature	150°C
ESD Rating (HBM, 1.5 kΩ, 100	
pF)	≥ 6.0 kV

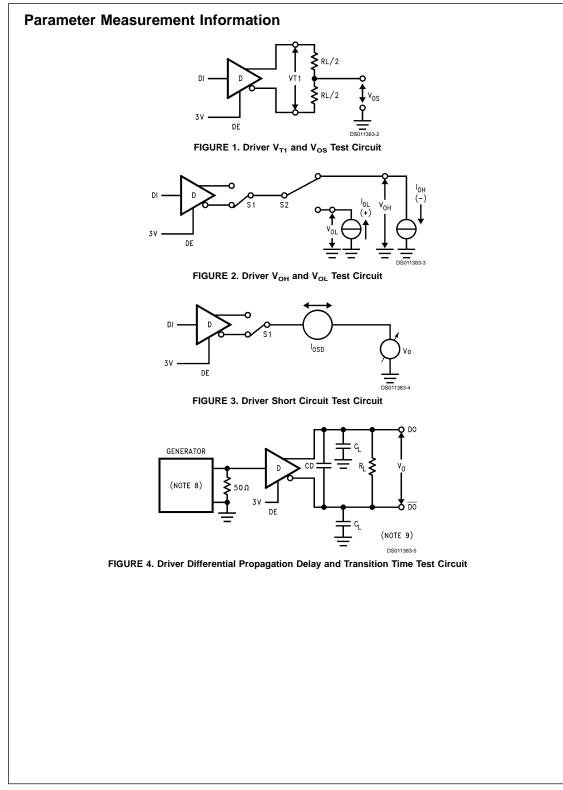
Recommended Operating Conditions

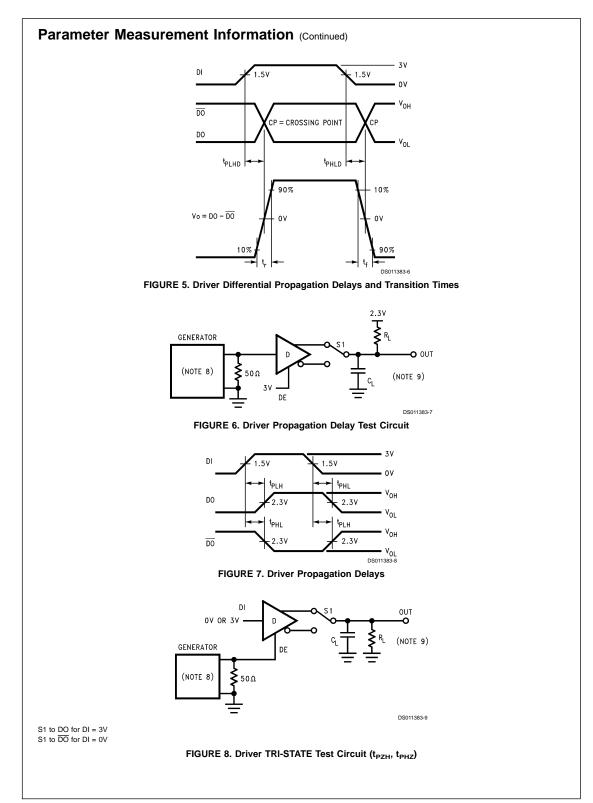
	Min	Max	Units
Supply Voltage, V _{CC}	4.75	5.25	V
Bus Voltage	-7	+12	V
Operating Temperature (T _A)			
DS36276	0	+70	°C

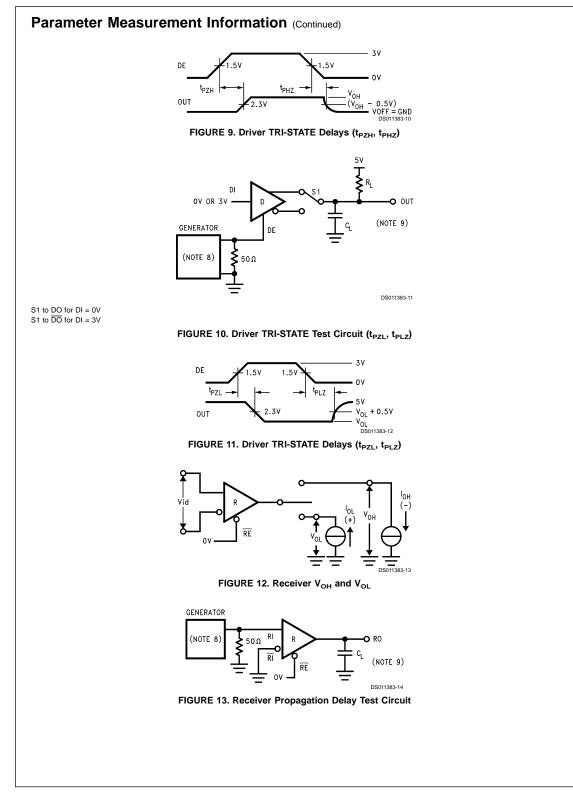
Electrical Characteristics (Notes 2, 4) Over recommended Supply Voltage and Operating Temperature ranges, unless otherwise specified.

Symbol	Parameter	Conditions			Min	Тур	Max	Units
DRIVER C	HARACTERISTICS							
V _{OD}	Differential Output Voltage	I _O = 0 mA (No Load)			1.5	4.8	6.0	V
V _{oDO}	Output Voltage	I _O = 0 mA (Output to GND)			0		6.0	V
V _{oDO}	Output Voltage				0		6.0	V
V _{T1}	Differential Output Voltage	$R_{L} = 54\Omega$ (485)	(Figure 1)		1.5	2.0	5.0	V
	(Termination Load)	R _L = 100Ω (422)			2.0	2.3	5.0	V
ΔV_{T1}	Balance of V _{T1}	$R_L = 54\Omega$	(Note 3)		-0.2	0.07	+0.2	V
	$ V_{T1} - \overline{V}_{\overline{T1}} $	R _L = 100Ω			-0.2	0.07	+0.2	V
Vos	Driver Common Mode	$R_L = 54\Omega$	(Figure 1)		0	2.5	3.0	V
	Output Voltage	R _L = 100Ω]		0	2.3	3.0	V
ΔV_{OS}	Balance of V _{OS}	$R_L = 54\Omega$	(Note 3)		-0.2	0.08	+0.2	V
	V _{os} − V _{os}	R _L = 100Ω			-0.2	0.08	+0.2	V
I _{OSD}	Driver Short-Circuit V _O = +12V (<i>Figure 3</i>)				134	290	mA	
	Output Current	$V_{O} = V_{CC}$ $V_{O} = 0V$				140		mA
						-140		mA
	$V_{O} = -7V$				-180	-290	mA	
RECEIVE	R CHARACTERISTICS							
V _{TH}	Differential Input High Threshold Voltage (Note 5)	$V_{O} = V_{OH}, I_{O} = -0.4 \text{ mA}$ -7V $\leq V_{CM} \leq +12V$				-0.18	0	V
V _{TL}	Differential Input Low Threshold Voltage (Note 5)	$V_{O} = V_{OL}, I_{O} = 8.0 \text{ mA}$ -7V $\leq V_{CM} \leq +12V$			-0.5	-0.23		V
V _{HST}	Hysteresis (Note 6)	$V_{CM} = 0V$				50		mV
I _{IN}	Line Input Current	Other Input = 0V	V _I = +12V			0.7	1.0	mA
	(V _{CC} = 4.75V, 5.25V, 0V)	DE = V _{IH} (Note 7)	$V_1 = -7V$			-0.5	-0.8	mA
I _{OSR}	Short Circuit Current	$V_{O} = 0V$		RO	-5.0	-30	-85	mA
l _{oz}	TRI-STATE [®] Leakage Current	$V_{0} = 0.4$ to 2.4V		1	-20		+20	μA
V _{OH}	Output High Voltage	$V_{ID} = 0V, I_{OH} = -0.4 \text{ mA}$ $V_{ID} = OPEN, I_{OH} = -0.4 \text{ mA}$		1	2.5	3.5		V
	(Figure 12)			1	2.5	3.5		V
V _{OL}	Output Low Voltage	$V_{ID} = -0.5V, I_{OI} = +8 \text{ mA}$		1		0.25	0.6	V
	(Figure 12)	$V_{ID} = -0.5V, I_{OL} = +$	-16 mA	1		0.35	0.7	V
R _{IN}	Input Resistance			1	12	19		kΩ

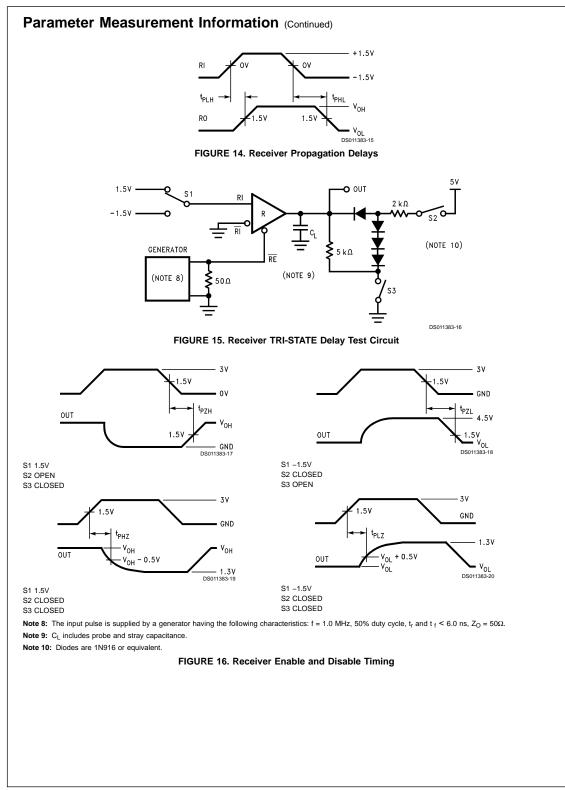
	ommended Supply Voltage and Ope	erating re	emperature ranges, unles	s otherwis	e specifie	a.		
Symbol	Parameter		Conditions		Min	Тур	Max	Unit
DEVICE O	HARACTERISTICS						-	
VIH	High Level Input Voltage			DE,	2.0		V _{cc}	V
VIL	Low Level Input Voltage			RE,	GND		0.8	V
I _{IH}	High Level Input Current	V _{IH} = 2	.4V	or			20	μA
I _{IL}	Low Level Input Current	$V_{IL} = 0.$.4V	- DI			-100	μA
V _{CL}	Input Clamp Voltage	I _{CL} = -'	18 mA	1		-0.75	-1.5	V
сс	Output Low Voltage	DE = 3	V, $\overline{\text{RE}} = 0$ V, DI = 0V			42	60	m/
CCR	Supply Current	DE = 0	V, $\overline{\text{RE}} = 0$ V, DI = 0V			28	45	m/
CCD	(No Load)	DE = 3	$DE = 3V, \overline{RE} = 3V, DI = 0V$			43	60	m/
ссх		DE = 0	V, RE = 3V, DI = 0V			31	50	m/
Symbol	Parameter		Conditions	Mi	n 1	Гур	Max	Units
	CHARACTERISTICS					76		
t _{PLHD}	Diff. Prop. Delay Low to High		$R_L = 54\Omega$	7		21	60	ns
t _{PHLD}	Diff. Prop. Delay High to Low		C _L = 50 pF	7		19	60	ns
SKD	Diff. Skew (t _{PLHD} -t _{PHLD})	$\begin{array}{c} C_{\rm D} = 50 \text{ pF} \\ (Figures 4, 5) \end{array}$				2	10	ns
r	Diff. Rise Time					12	50	ns
f	Diff. Fall Time					12	50	ns
PLH	Prop. Delay Low to High		$R_L = 27\Omega$, $C_L = 15 \text{ pF}$			22	45	ns
t _{PHL}	Prop. Delay High to Low		(Figures 6, 7)			22	45	ns
PZH	Enable Time Z to High		$R_L = 110\Omega$			32	55	ns
PZL	Enable Time Z to Low		$C_L = 50 \text{ pF}$			32	65	ns
рнг	Disable Time High to Z	(Figure 8 – Figure 11)				22	55	ns
PLZ	Disable Time Low to Z					16	55	ns
RECEIVE								
t _{PLH}	Prop. Delay Low to High		$V_{ID} = -1.5V \text{ to } +1.5V$	1:		40	70	ns
t _{PHL}	Prop. Delay High to Low		C _L = 15 pF (<i>Figures 13, 14</i>)	1:	5	42	70	ns
lsк	Skew (t _{PLH} -t _{PHL})					2	15	ns
PZH	0		E !			-		ns
t _{PZL}	Enable Time Z to Low		(Figures 15, 16)			17	50	ns
t _{PHZ}								ns
t _{PZH} t _{PZL} t _{PHZ}	Enable Time Z to High		C _L = 15 pF (<i>Figures 15, 16</i>)			15 17 24 19	50	

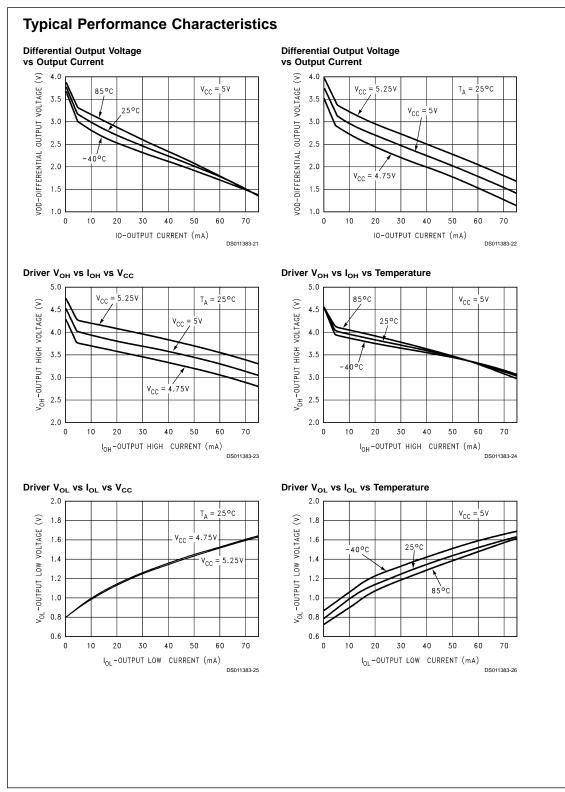

Note 2: Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground unless otherwise specified.

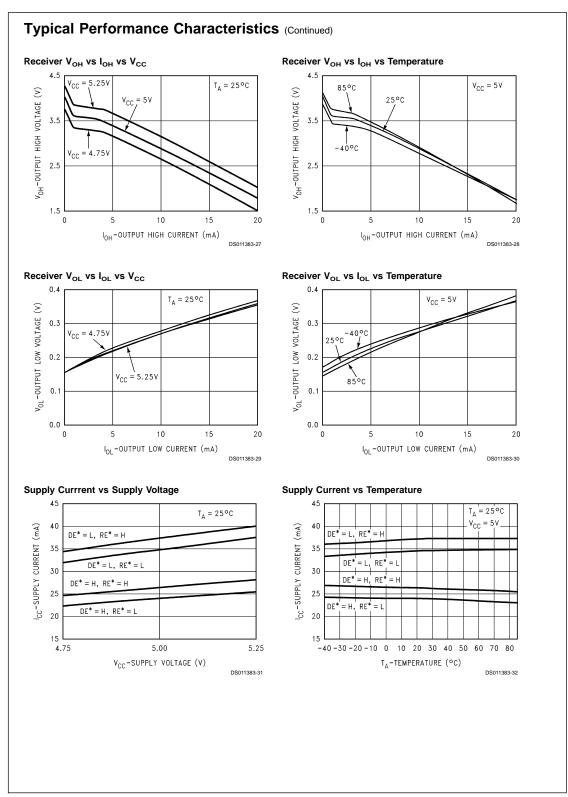

Note 3: $\Delta |V_{T1}|$ and $\Delta |V_{OS}|$ are changes in magnitude of V_{T1} and V_{OS} , respectively, that occur when the input changes state.

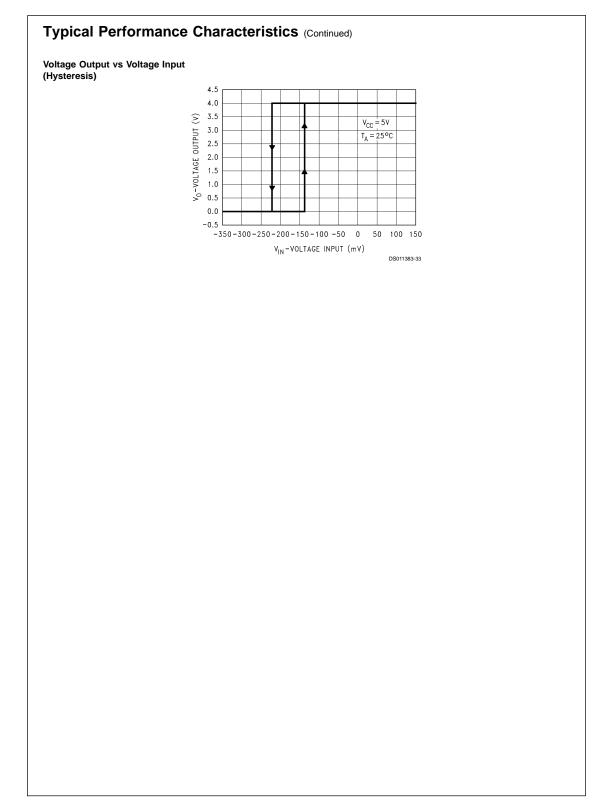

Note 4: All typicals are given for V $_{CC}$ = 5.0V and T_{A} = +25 $^{\circ}C.$

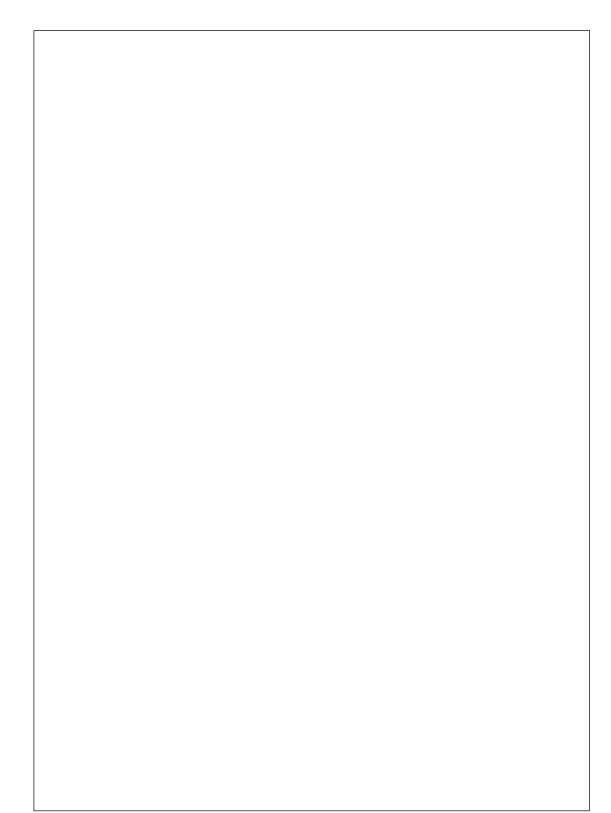
Note 5: Threshold parameter limits specified as an algebraic value rather than by magnitude.

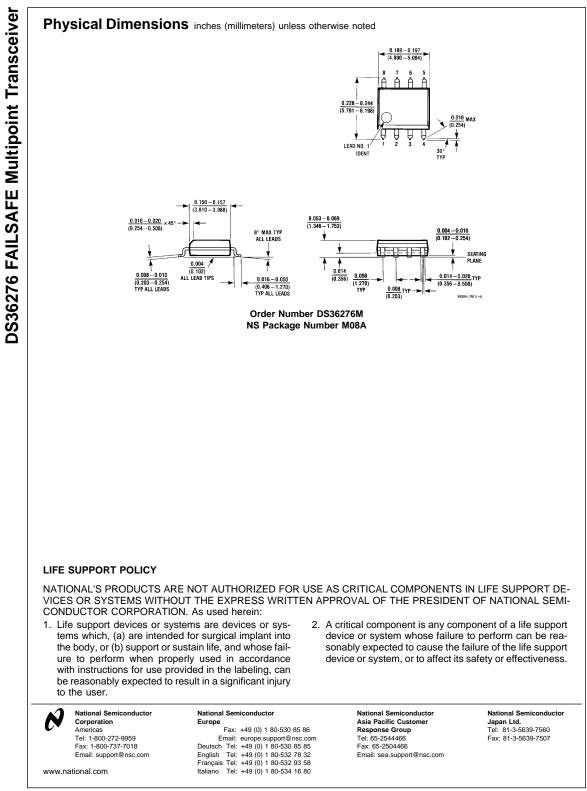

Note 6: Hysteresis defined as $V_{HST} = V_{TH} - V_{TL}$. Note 7: I_{IN} includes the receiver input current and driver TRI-STATE leakage current.






6





8

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.